Wednesday, January 11, 2006

Propiedades de las cargas eléctricas

Carga puntual: cuerpo electrizado sin dimensiones.

Existen 2 clases de cargas en la naturaleza:

Positivas:

* Carga adquirida por el vidrio frotado. De esta carga son portadores los protones.

Negativas:

* Es la carga que adquiere el ámbar, y de ella son portadores los electrones.

Las cargas de mismo signo se repelen y las de signo contrario se atraen. La carga se conserva. En la electrización no se crea carga, solamente se transmite de unos cuerpos a otros, de forma que la carga total permanece cte. La carga está cuantizada. Se representa como un múltiplo entero de una carga elemental.

Aislantes y conductores

Cuando un cuerpo neutro es electrizado, sus cargas eléctricas, bajo la acción de las fuerzas correspondientes, se redistribuyen hasta alcanzar una situación de equilibrio. Algunos cuerpos, sin embargo, ponen muchas dificultades a este movimiento de las cargas eléctricas por su interior y sólo permanece cargado el lugar en donde se depositó la carga neta. Otros, por el contrario, facilitan tal redistribución de modo que la electricidad afecta finalmente a todo el cuerpo. Los primeros se denominan aislantes y los segundos conductores.

Entre los buenos conductores y los aisladores existe una gran variedad de situaciones intermedias. Es de destacar entre ellas la de los materiales semiconductores por su importancia en la fabricación de dispositivos electrónicos que son la base de la actual revolución tecnológica. En condiciones ordinarias se comportan como malos conductores, pero desde un punto de vista físico su interés radica en que se pueden alterar sus propiedades conductoras con cierta facilidad mejorando prodigiosamente su conductividad, ya sea mediante pequeños cambios en su composición, ya sea sometiéndolos a condiciones especiales, como elevada temperatura o intensa iluminación.

A temperaturas cercanas al cero absoluto, ciertos metales adquieren una conductividad infinita, es decir, la resistencia al flujo de cargas se hace cero. Se trata de los superconductores. Una vez que se establece una corriente eléctrica en un superconductor, los electrones fluyen por tiempo indefinido.

Tuesday, January 10, 2006

Campo eléctrico

Se denomina campo eléctrico a la deformación del espacio creada alrededor de una región que contiene carga. El campo eléctrico representa, en cada punto del espacio afectado por la carga, una propiedad local asociada al mismo. Una vez conocido el campo en un punto no necesitamos saber quién lo origina para calcular la fuerza sobre una carga u otra propiedad relacionada con él.

Considérese una carga Q fija en una determinada posición (ver figura). Si se coloca otra carga q en un punto P1, a cierta distancia de Q, aparecerá una fuerza eléctrica actuando sobre q. Si la carga q se ubica en otros puntos cualesquiera, tales como P2, P3 etc., evidentemente, en cada uno de ellos, también estaría actuando sobre q una fuerza eléctrica, producida por Q. Para describir este hecho, se dice que en cualquier punto del espacio en torno a Q existe un campo eléctrico originado por esta carga. Obsérvese en la figura que el campo eléctrico es originado en los puntos P1, P2, P3 etc., por Q, la cual, naturalmente, podrá ser tanto positiva (la de la figura) como negativa. La carga q que es trasladada de un punto a otro, para verificar si en ellos existe, o no, un campo eléctrico, se denomina carga de prueba. El campo eléctrico puede representarse, en cada punto del espacio, por un vector, usualmente simbolizado por y que se denomina vector campo eléctrico. El módulo del vector, en un punto dado, se denomina intensidad del campo eléctrico en ese punto. Para definir este módulo, considérese la carga Q de la figura, generando un campo eléctrico en el espacio que la rodea. Colocando una carga de prueba q en un punto P1, se verá que sobre ella actúa una fuerza eléctrica.

Sistema eléctrico del corazón

¿Qué es el sistema eléctrico de su corazón?

El sistema eléctrico de su corazón controla la velocidad de su latido cardiaco. El sistema incluye una red de vías eléctricas similar al cableado eléctrico de su hogar. Las vías portan las señales eléctricas de su corazón. El movimiento de las señales hace que el corazón lata. Cuando funciona correctamente, el sistema eléctrico del corazón responde automáticamente según varíen las demandas de oxígeno del organismo. Acelera la frecuencia cardiaca al subir las escaleras, por ejemplo, y la reduce al dormir. Cuando su frecuencia cardiaca aumenta, significa que su corazón late más deprisa y su cuerpo recibe una mayor cantidad de sangre rica en oxígeno. El sistema eléctrico del corazón también se denomina sistema de conducción cardiaca.

Ley de Coulomb

La ley de Coulomb lleva su nombre en honor a Charles Augustin de Coulomb, uno de sus descubridores y el primero en publicarlo. No obstante, Henry Cavendish obtuvo la expresión correcta de la ley, con mayor precisión que Coulomb, si bien esto no se supo hasta después de su muerte Este notorio físico francés efectuó mediciones muy cuidadosas de las fuerzas existentes entre cargas puntuales utilizando una balanza de torsión similar a la usada por Cavendish para evaluar la ley de la gravitación universal. Dichas mediciones permitieron determinar que:

1) La fuerza de interacción entre dos cargas q1 y q2 duplica su magnitud si alguna de las cargas dobla su valor, la triplica si alguna de las cargas aumenta su valor en un factor de tres, y así sucesivamente. Concluyó entonces que el valor de la fuerza era proporcional al producto de las cargas.

en consecuencia:

2) Si la distancia entre las cargas es r, al duplicarla, la fuerza de interacción disminuye en un factor de 4; al tripicarla, disminuye en un factor de 9 y al cuadriplicar r, la fuerza entre cargas disminuye en un factor de 16. En consecuencia, la fuerza de interacción entre dos cargas puntuales, es inversamente proporcional al cuadrado de la distancia.

Líneas de campo eléctrico

Es posible conseguir una representación gráfica de un campo de fuerzas empleando las llamadas líneas de fuerza. Son líneas imaginarias que describen, si los hubiere, los cambios en dirección de las fuerzas al pasar de un punto a otro. En el caso del campo eléctrico, puesto que tiene magnitud y sentido, se trata de una cantidad vectorial, y las líneas de fuerza o líneas de campo eléctrico indican las trayectorias que seguirían las partículas positivas si se las abandonase libremente a la influencia de las fuerzas del campo. El campo eléctrico será un vector tangente a la línea de fuerza en cualquier punto considerado.Una carga puntual positiva dará lugar a un mapa de líneas de fuerza radiales, pues las fuerzas eléctricas actúan siempre en la dirección de la línea que une a las cargas interactuantes, y dirigidas hacia fuera porque las cargas móviles positivas se desplazarían en ese sentido (fuerzas repulsivas). En el caso del campo debido a una carga puntual negativa el mapa de líneas de fuerza sería análogo, pero dirigidas hacia la carga central. Como consecuencia de lo anterior, en el caso de los campos debidos a varias cargas las líneas de fuerza nacen siempre de las cargas positivas y mueren en las negativas. Se dice por ello que las primeras son manantiales y las segundas «sumideros» de líneas de fuerza.

Monday, January 09, 2006

Electricidad en el cuerpo humano

Hablaremos sobre la electricidad en el cuerpo humano, asi que priemro daremos definición y comportamiento a algunas partes del cuerpo los cuales influyen o producen elcetricidad.El cuerpo humano es una compleja máquina. Requiere que muchas de sus piezas, cadenas y engranajes trabajen simultánea y sincronizadamente para que cada uno de nosotros pueda llevar una vida normal. Y al igual que todas las máquinas de alta tecnología, necesita de un computador central que administre y controle cada una de sus funciones y movimientos.Pero nuestro ordenador es mucho más completo, ya que además nos permite pensar, sentir, actuar y decidir.Este tremendo computador es el Sistema Nervioso, constituido por un conjunto de órganos que nos permiten ponernos en contacto con el mundo exterior y dirigir las funciones orgánicas. Su trabajo consiste en recoger los estímulos que recibimos tanto en el ámbito consciente -por ejemplo, la luz del sol-, como en el inconsciente -como puede ser el daño que provoca un virus en nuestro estómago-, transformándolos en impulsos nerviosos.Estos llegan a la parte específica del cerebro que comanda la zona estimulada, donde se procesa la información y se genera la reacción o respuesta.Las reacciones son muy variadas. Van desde la producción de movimientos, la secreción de las glándulas, la circulación, la digestión o la respiración, hasta las sensaciones producto de la estimulación de los sentidos.Además de todo esto, en este sistema, específicamente en el cerebro, se concentra la actividad intelectual y afectiva. Así, el Sistema Nervioso nos permite pensar, comunicarnos, aprender, recordar; es la sede de nuestros sentimientos, sensaciones y emociones; nos permite tener habilidades artísticas y movernos, y controla todo el funcionar interno de nuestro cuerpo.La unidad básica del sistema nervioso es una célula muy especializada llamada neurona, que se distingue de una célula normal por su incapacidad para reproducirse, lo cual explica que toda lesión cerebral sea definitiva. Las neuronas miden menos de 0.1 milímetro. Presentan dos clases de prolongaciones: las más pequeñas, de aspecto arboriforme (con forma de árbol), situadas en torno al citoplasma, reciben el nombre de dendritas; y las más largas y cilíndricas, que terminan en varias ramificaciones, llamadas cilindroeje o axón.Estas tienen una doble misión: por una parte, conectan a las neuronas entre sí –proceso denominado sinapsis- y, por otra, al reunirse con cientos o miles de otros axones, dan origen a los nervios que conectan al sistema nervioso con el resto del cuerpo.La sinapsis, que permite la comunicación entre los aproximadamente 28 mil millones de neuronas de nuestro sistema nervioso, se produce mediante señales químicas y eléctricas, y se lleva a cabo en los botones sinápticos, situados en cada extremo de las ramificaciones del axón. En el interior de cada botón hay saquitos (vesículas) llenos de unas sustancias químicas llamadas neurotransmisores, que ayudan a traspasar la información de una célula a otra.Para que el impulso eléctrico se transmita, los iones positivos de sodio que están presentes fuera de la neurona en estado de descanso, traspasan la membrana celular.

Al interior de la neurona, la carga eléctrica es negativa. Cuando los iones positivos de sodio ingresan a la neurona, cambian la carga interna de negativa a positiva. En la medida que el impulso avanza por la membrana, su interior recobra la carga negativa. De esta forma, el impulso va pasando desde una neurona a otra.En el caso de los impulsos que llevan una orden del cerebro a algún músculo, el proceso es el siguiente: tras viajar por muchísimas neuronas, el impulso llega al último botón sináptico cercano a las fibras musculares; entonces, un neurotransmisor químico viaja (o salta) a través del surco sináptico -espacio entre las terminaciones nerviosas y las células musculares- y estimula a las fibras musculares para que se contraigan.El sistema nervioso funciona en base a impulsos eléctricos, aunque su voltaje o carga eléctrica es menor a la ocupada por un par de audífonos. El voltaje utilizado por una ampolleta es cuatro millones de veces más fuerte. El cerebro es el órgano que controla la actividad fisiológica -el funcionamiento del cuerpo- e interpreta los impulsos generados por el contacto con nuestro entorno. Contiene los centros nerviosos para el pensamiento, la personalidad, los sentidos y el movimiento voluntario.Este órgano, que pesa alrededor de 1.200 gramos en un adulto, está compuesto por dos hemisferios ubicados en la parte superior del cráneo y que comprenden casi el 90 por ciento del encéfalo.

Cada hemisferio mide de 15 a 17 cm desde la parte anterior a la posterior, y juntos miden entre 11 y 14 cm de ancho.Debajo de la corteza cerebral, que es una capa de materia gris llena de pliegues, de unos 2 a 6 mm de espesor, se encuentra la sustancia blanca, integrada por millones de fibras nerviosas. al centro del cráneo, la sustancia blanca de ambos hemisferios se une formando una estructura similar a una cuerda: el cuerpo calloso, que es el más grande de varios haces de fibras nerviosas, llamados comisuras, que conectan zonas específicas de los dos hemisferios.Ambas porciones cerebrales están separadas por la cisura de Rolando, surco profundo que debe su nombre al anatomista italiano Luigi Rolando, que lo describió por primera vez a principios del siglo XIX.

En la parte anterior de esta hendidura, que separa longitudinalmente ambos hemisferios, se encuentra la zona que controla la actividad motora, mientras que en su parte posterior se ubica el control sensitivo.El hemisferio derecho rige las funciones de la mitad izquierda del cuerpo, y el hemisferio izquierdo controla las de la parte derecha. Esto se debe a que los nervios se entrecruzan en la médula espinal.El surco longitudinal (cisura de Rolando) y otro lateral, llamado cisura de Silvio, separan a los hemisferios en cuatro cuadrantes -que reciben los nombres de los huesos craneanos que los protegen-: son los lóbulos frontal, parietal, temporal y occipital.La detección e interpretación de imágenes visuales está localizada en el lóbulo occipital; la percepción auditiva se encuentra en el temporal, lóbulo donde también se ubica el olfato, el equilibrio y la memoria; en el lóbulo parietal se sitúan el gusto y la percepción del tacto (temperatura, presión y dolor); y en el lóbulo frontal se centra el habla, la elaboración del pensamiento, las emociones y los movimientos.En el interior del cerebro hay cuatro cavidades intercomunicadas, llamadas ventrículos, conectadas con otra cavidad larga y delgada que se dirige hacia abajo por el centro de la médula espinal. Dentro de estos huecos fluye el líquido incoloro denominado cefalorraquídeo o cerebroespinal producido en los ventrículos, y que se renueva cuatro a cinco veces durante el día.Este medio acuoso, rico en proteínas y glucosa, aporta energía para el funcionamiento de las neuronas y los linfocitos. Estos últimos nos protegen de las infecciones. En otras palabras, al circular a su alrededor, este fluido protege y alimenta a todas las estructuras que conforman el sistema nervioso.

Google